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1. Introduction 

White matter lesions (WMLs) are brain abnormalities that appear in different brain diseases, 

such as multiple sclerosis (MS), head injury, hypertension-related vascular diseases, and various 

forms of dementia. Their incidence also increases with normal aging. MRI is routinely used as 

surrogate in the study of WMLs, as MRI signal changes reflect certain aspects of the underlying 

brain pathology. Out of the many available MRI acquisition protocols, T1-w and T2-w, PD, and 

FLAIR are most commonly used for evaluation of WML load in the brain. Computer analysis 

methods have started to complement expert readings of these images, as they may improve 

throughput and consistency, in addition to providing more accurate quantitative measures of 

WMLs. Computer analysis is even more critical in longitudinal studies that involve relatively 

small changes in WML, thereby rendering it advantageous, if not necessary, to use unbiased 

computer-assisted segmentation methods to detect WML changes longitudinally.  

We describe in this document a novel multi-spectral WML segmentation protocol via 

incorporating information from T1-w, T2-w, PD-w and FLAIR MR brain images. Numerous 

techniques in medical image analysis are incorporated to achieve the AAA (Automatic, Accurate 

and Applicable) criteria. 

 

2. Overview of the Algorithm 

The WML segmentation algorithm [1-3] uses a combination of image analysis and machine 

learning techniques such as Support Vector Machine (SVM) [5]. Image intensities from multiple 

MR acquisition protocols, after co-registration, are used to form voxel-wise attribute vectors that 

help reduce ambiguity in discriminating lesion and normal tissue during segmentation. Three 

steps are involved (see Fig. 1): 

1. Preprocessing includes co-registration of the MR images, skull stripping [4], intensity 

normalization, and inhomogeneity correction.  

2. For training the classification model, a set of training samples is prepared by expert readers 

via manual segmentation.  

3. The WML segmentation result is generated by voxel-wise classification. False positive 

voxels are eliminated by considering the distance distribution in a Hilbert space.  



 

Fig. 1. Overview of the WML segmentation algorithm. 

 

3. Installation 

  3.1. Required Software Packages 

  The following is needed: 

    - Insight Toolkit (Ver. 2.4 or higher) 

    - CMake (Ver. 2.6 or higher) 

   - 3D Slicer (Ver. 3.4 or higher) 

  3.2. Download & Installation 

The software package can either be downloaded from the 3D Slicer website or from NITRC. 

a) 3D Slicer (for users): 

Details on module installation can be found in the tutorial: 

White_Matter_Lesion_Segmentation_Tutorial.pdf, which can be found at 

http://www.nitrc.org/projects/hammerwml.  

After launching 3D Slicer. 

1. Press F2 or go to View >> Application Settings >> Module Settings on the menu of 

Slicer3. 

2. Click the “add a preset” button. 

3. Select the location of the White Matter Lesion Segmentation modules (wmlstrain and 

wmlstest). 

4. Close Slicer3 and restart. 

http://www.nitrc.org/projects/hammerwml


 

  b) NITRC (for developers) 

1. Download and extract the source codes and sample data from 

http://www.nitrc.org/projects/hammerwml.  

2. Run CMake based on CMakeList.txt in the src folder and compile the code by using the 

make command. 

3. The generated executable files (wmlstrain and wmlstest) can be used with 3D Slicer 

following the instructions given above.  

 

4. User Guide 

4.1.Training 

4.1.1 GUI 

Details on GUI usage for training the classifiers are included in the tutorial file: 

White_Matter_Lesion_Segmentation_Tutorial.pdf, which can be found at 

http://www.nitrc.org/projects/hammerwml. 

  4.1.2 Command line  

  wmlstrain DataDirectory TrainSubjectList SuffixList ModelDirectory 

- DataDirectory: directory that contains the training images 

- TrainSubjectList: a text file listing the file names (w/o extensions) of the training images 

- SuffixList: a text file listing the file name extensions of the training images 

- ModelDirectory: path to the directory where the training results will be stored 

 

4.2. Testing 

  4.1.1 GUI 

Details on GUI usage for training the classifiers are included in the tutorial file: 

White_Matter_Lesion_Segmentation_Tutorial.pdf, which can be found at 

http://www.nitrc.org/projects/hammerwml. 

 4.1.2 Command line  

  wmlstest Modelname TestSubjectList SuffixList 

   - Modelname: path to the directory where the training results were stored 

   - TestSubjectList: a text file listing the file names (w/o extensions) of the testing images 

http://www.nitrc.org/projects/hammerwml
http://www.nitrc.org/projects/hammerwml
http://www.nitrc.org/projects/hammerwml


   - SuffixList: a text file listing the file name extensions of the testing images. 

 

   The segmentation results will be saved as afterfinaltest_threshold.* in the specified destination 

folder. 

 

5. Developer’s guide 

Here we provide the detailed descriptions on the ITK classes related to training, testing and 

preprocessing, respectively. Once the source code is modified, new executable files can be 

generated by following the instructions in 3.2.2. 

 

5.1. Training  

  - main function in wmlstrain.cxx: This performs feature selection by calling a feature selector 

(itk::WMLGetSelectedFeature) and carries out training based on the features. 

  - itk::WMLGetSelectedFeature<ImageType, MeasurementVectorType>: This class extracts 

features for both lesion and non-lesion ROIs from training samples. 

  - itk::WMLAdaptiveBooster< ImageType, MeasurementVectorType >: This class help select 

best feature set by testing the initial feature set iteratively. 

  - Also, SVM-related classes for building SVM models are included in the training part: 

itk::SVMSolverBase, itk::SVMSolver1, itk::SVMKernelBase 

 

5.2. Testing  

  - main function in wmlstest.cxx: This performs feature selection by calling a feature selector 

itk::WMLGetSelectedFeature) and carries out testing based on the features. 

  - itk::WMLGetSelectedFeature<ImageType, MeasurementVectorType>: This class extracts 

features from testing sample. 

  - itk:: WMLTestingProcessor<InputImageType, OutputImageType>: Performs testing based 

on the selected features from testing image and learned SVM model in the training stage. 

 

5.3. Preprocessing  

Before training and testing, preprocessing such as skull stripping, affine registration, and bias 

correction need to be performed. 



  -itk::WMLPreprocessor<InputImageType, OutputImageType>: The preprocessing core. 

  -itk::AffineRegistration<InputImageType, OutputImageType>: Aligns all sample images. 

  -itk::BiasCorrection<InputImageType, OutputImageType>: Bias correction. 

   -itk::HistogramMatching<InputImageType, OutputImageType>: Matches the intensity 

histograms of training and testing images. 

  -itk::SkullStripping<InputImageType, OutputImageType>: Skull stripping to extract the brain 

parenchyma. 

  -itk::RemoveEyeregion<InputImageType, OutputImageType>: Removes the eyes from the 

images. 
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