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Optimally interpreting our situations and experiences frequently requires comparing the evidence

supporting conflicting hypotheses and deciding which to accept. This decision is comparable to an

‘‘Aha!’’ moment reached during insightful problem solving. We used a probabilistic reasoning task

to investigate the neural activity underlying these processes. Participants rated the probability that

a given focal hypothesis, rather than its alternative, was true. Decisions to accept the focal hypothesis

elicited a stronger signal than decisions to reject it in a network involving the dorsal anterior cingulate

cortex (dACC) and functionally connected frontal, parietal, and occipital regions. Follow-up analyses

suggested that this was not simply a higher overall level of activation within the dACC or other

individual regions of the network, but reflected a stronger signal for the network as a whole. This result

is discussed in terms of functional connectivity between the dACC and other brain regions as a possible

mechanism for coherence between components of a mental representation.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Effectively judging the validity of a hypothesis is fundamental
to success in many aspects of life, such as social interaction,
economic decision making, and voter choice. Hypothesis judg-
ment is also essential to more basic cognitive functions, such
as memory recognition or interpreting a visual scene. Effectively
judging a hypothesis often requires comparing it to at least one
alternative. In order to decide whether the hypothesis being
judged (the focal hypothesis) is more probable than an alter-
native, one must assess the strength of evidence supporting each
hypothesis, compare those strengths, and decide which hypoth-
esis to accept. In the current study, we used functional magnetic
resonance imaging (fMRI) to establish a biological basis for these
fundamental aspects of hypothesis judgment.

In order to investigate the functional brain networks involved in
judging hypotheses, we used a probabilistic reasoning task with
objectively quantifiable evidence (Beach, 1968; Moritz, Woodward, &
Lambert, 2007; Speechley, Whitman, & Woodward, 2010; Whitman
& Woodward, 2011, 2012). In a typical version of this paradigm, the
participant is presented with an item of a given color (the relevant
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color) drawn from one of two containers. The participant rates the
probability that it was drawn from one particular container (the focal
hypothesis) rather than a second container (the alternative hypoth-
esis). The container with the most items of the relevant color is the
most probable origin of the item drawn. An advantage of this para-
digm is that it allows precise control over the strength of supporting
or refuting evidence.

Judging the validity of a hypothesis ultimately involves a
decision to accept a focal hypothesis which is considered more
coherent with the available evidence than its alternative (pro-
vided that decisions are made accurately). When cognitive repre-
sentations of evidence-hypothesis information form a coherent
mental construct, that construct is considered stable and salient
(Köhler, 1929; Metzger, 2006), which may translate to a stronger
and more stable pattern of activity in the underlying neural
network. In the context of our hypothesis comparison task, such
coherence and stability might result in a stronger fMRI signal
for the network underlying mental representations of evidence-
hypothesis matches.

The decision to accept a focal hypothesis due to sufficient
coherence with the evidence could be considered a type of ‘‘Aha!’’
moment. To the extent that this is true, the dorsal anterior
cingulate cortex (dACC) could be expected to be active under
these circumstances. During insightful problem solving and
difficult perceptual recognition tasks, the dACC is shown to be
active in response to ‘‘Aha!’’ moments, that is to say, when infor-
mation relevant to interpreting a problem is reorganized into
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a gestalt, or coherent mental construct, of the solution. Other
brain regions involved include the frontal eye fields (FEF), the
dorsolateral prefrontal cortex (DLPFC) and parietal regions includ-
ing the intraparietal sulcus (IPS) and superior and inferior parietal
lobules (Aziz-Zadeh, Kaplan, & Iacoboni, 2009; Kounios & Beeman,
2009; Luo, Niki, & Phillips, 2004; Ploran et al., 2007). In the
current study, we assessed functional connectivity between the
dACC and these other brain regions triggered by recognition of a
match between the evidence and the focal hypothesis.

We made two predictions regarding the expected functionally
connected frontoparietal network involving the dACC. First, based
on our view of the dACC and other functionally connected frontal
and parietal regions being involved in recognizing coherence
between aspects of an emerging mental construct in an ‘‘Aha!’’
moment, we predicted stronger activity in the underlying neural
network when the focal hypothesis was accepted (because it was
coherent with the evidence) than when it was rejected. Second,
we expected this network to be more strongly activated in the
hypothesis comparison task than the less cognitively complex
evidence assessment control task, as dACC-based brain networks
are known to be responsive to cognitive demands (Duncan &
Owen, 2000).
2. Material and methods

2.1. Participants

Forty-six volunteers (26 females, 20 males) with a mean age of 25.0 years

(SD¼5.2) participated in the experiment. They received $10 per hour and were

reimbursed for transportation expenses. All participants were right-handed.

Participants were recruited via posters on the University of British Columbia

(UBC) campus and in community centers in the greater Vancouver area, and via

postings on online bulletin boards. Ethical approval was provided by the UBC

Clinical Research Ethics Board. Participants were excluded from participating if

they could not safely undergo an MRI scan, if they had experienced any head

injuries resulting in loss of consciousness for more than 20 min, if they suffered

from epilepsy, encephalitis, or meningitis, or if they or an immediate family who

member suffered from a psychotic illness (e.g. schizophrenia or bipolar disorder).

2.2. Procedure

On each trial of the task, participants were presented with a scene depicting

three lakes, two of which were upstream from the third (see Fig. 1). At the

beginning of each trial, an animated series of images was displayed, depicting a

single fish, either black or white, breaking the surface, jumping along an inverted

U-shaped path (parabolic) for 140 ms, then disappearing again below the surface.

We will refer to the color of this jumping fish as the relevant color. The color of this

fish was also specified throughout the remaining duration of the trial within the

question adjacent to the rating scale. This ensured that participants would be

aware of the current relevant color even if they had not seen the fish jump. The

populations of 100 fish in each of the two upstream lakes then became visible.

Aside from the jumping fish, no other fish were ever visible in the downstream

lake. The positions of the black and white fish within each lake were randomized

over trials, so that any two trials with identical ratios of black to white fish would

not be identical in appearance. On hypothesis comparison trials, participants were

told that any fish appearing in the downstream lake originated in either the left-

hand upstream lake or the right-hand upstream lake. They were required to rate

the probability that the jumping fish came from one particular lake (the focal lake)

rather than the alternative lake. The assignment of the left-hand and right-hand

lakes as focal and alternative hypotheses was randomized across trials. On the

evidence assessment trials, participants reported the percentage of fish of the

relevant color in both lakes together.

Each trial allowed 6 s for the participant to make a rating. All responses were

made by moving a slider up or down a vertical response scale using button presses

on a LUMItouch fiber-optic response device (Lightwave Medical, Vancouver,

British Columbia, Canada). The entire scale was 160 pixels in length. All responses

were made with the dominant (right) hand. The two outer response buttons

served to move the cursor either up or down ten pixels (the index finger moved

the cursor down), while the two inner response buttons served to move the cursor

either up or down two pixels (the middle finger moved the cursor down).

The Evidence Assessment and Hypothesis Comparison tasks were performed in

alternating blocks of 14 trials each, with 4 blocks per functional run. There were

7 conditions within the Hypothesis Comparison task, corresponding to different
percentages of fish of the relevant color in the focal and alternative lakes. If the

percentage was 20% in the focal lake, it was either 20% or 50% in the alternative

lake. If it was 50% in the focal lake, it was 20%, 50%, or 80% in the alternative lake.

If it was 80% in the focal lake, it was either 50% or 80% in the alternative lake.

Thus, the 7 conditions matched the structure of a Likert scale: the evidence strongly

favored accepting the focal hypothesis (50% focal vs. 20% alternative), weakly

favored it (80% focal vs. 50% alternative), was neutral (80% vs. 80%, 50% vs. 50%, or

20% vs. 20%), weakly favored rejecting the focal hypothesis (50% focal vs. 80%

alternative), or strongly favored rejecting the focal hypothesis (20% focal vs. 50%

alternative). There were also 7 conditions in the Evidence Assessment task that used

the same visual displays, but these required the participants to rate the percentage

of fish of the relevant color in both lakes combined. For each of those 14 conditions,

there were 2 trials per run with an inter-trial interval (ITI) of 2 s and 2 trials per run

with an ITI of 8 seconds. During the ITI, three empty lakes were displayed, i.e.

without fish or a response scale. Halfway through each experimental run, a 30-s rest

break occurred, during which the words ‘‘Take a 30 second break’’ were displayed

on a dark gray screen. The total duration of each run was 740 s (370 scans).

2.3. Image acquisition

Imaging was performed at the University of British Columbia’s MRI Research

Centre on a Philips Achieva 3.0 T scanner with Quasar Dual gradients (with peak

strength of 80 mT/m and maximum slew rate of 200 T/m/s). The participant’s head

was firmly secured using a custom head holder. Functional image volumes were

collected with T2n-weighted gradient echo spin pulse sequences (TR¼2000 ms,

TE¼30 ms, flip angle 901, 36 slices, 3 mm thick, 1 mm gap, sense factor 2, matrix is

80�80 reconstructed at 128, FOV¼240 mm�240 mm�143 mm, measured

voxel is 3 mm�3 mm�3 mm, actual bandwidth per pixel is 53.6 Hz) effectively

covering the whole brain (143 mm axial extent). Each participant completed one

structural scan and two functional runs of 370 scans each.

2.4. Image preprocessing

Functional images were reconstructed offline, and the scan series was

realigned and motion corrected using the method implemented in SPM5. Transla-

tion and rotation corrections did not exceed 2 mm or 2.51 for any of the

participants. Parameters for spatial normalization into the modified MNI space

used in SPM5 were determined using mean functional images constructed from

the realigned images of each participant and scan series. The normalized func-

tional images were smoothed with an 8 mm full width at half maximum Gaussian

filter. Data were normalized to the EPI template using an affine transformation

and voxels of 4�4�4 mm3. Any artifacts resulting from head movement were

removed via regression, with the regressors being the six head movement parameters

output by SPM5 during image realignment.

2.5. Functional connectivity analysis

To characterize how the activity of functionally connected networks differed

between experimental conditions, we used a multivariate analysis technique that

identifies brain regions showing temporally correlated activation (i.e., functional

networks). Constrained Principal Component Analysis for fMRI (fMRI-CPCA)

combines multivariate regression analysis and principal component analysis to

derive networks from the portion of the BOLD signal that is explained by the

timing of task events. CPCA differs from other approaches to examining correla-

tions in activation among regions in that it (1) identifies functional networks that

are based on task related covariance/correlation in blood-oxygen level dependent

(BOLD) signal, as opposed to being based on any source of covariance/correlation

in the time course, (2) estimates the hemodynamic response (HDR) for each

network, and (3) quantifies the effect of experimental manipulations on each

functional network.

The details of the fMRI-CPCA method are presented elsewhere (Metzak,

Feredoes et al., 2011; Metzak, Riley et al., 2011; Woodward et al., 2006). Briefly,

after variance in the BOLD signal attributable to the task has been separated from

that not attributable to the task, the dominant patterns of inter-correlation between

voxels over time are used to derive functional networks. For the comprehensive

CPCA theory and proofs please see previously published work (Hunter & Takane,

2002; Takane & Hunter, 2001; Takane & Shibayama, 1991). The fMRI-CPCA applica-

tion is available on-line, free of charge (www.nitrc.org/projects/fmricpca). We now

briefly present matrix equations for the current application of fMRI-CPCA. This

application of CPCA involved preparation of two matrices: Z and G.

2.6. Preparation of Z

The first matrix, Z, contained the BOLD time series of each voxel, with one column

per voxel and one row per scan. Each column contained normalized and smoothed

activations over all scans, at first for each subject separately, but then vertically

concatenated to form a final Z matrix comprised of stacked individual Z matrices.

www.nitrc.org/projects/fmricpca


Fig. 1. The displays presented while ratings were made during (a) the hypothesis comparison task, and (b) the evidence assessment task. Each trial began with a single fish

(either black or white) jumping in the downstream lake. The contents of the two upstream lakes then became visible, and a rating scale appeared in the downstream lake.

On hypothesis comparison trials, participants rated the probability that the jumping fish migrated downstream from the left-hand upstream lake (the focal hypothesis)

rather than the right-hand upstream lake (the alternative hypothesis). On evidence assessment control trials, participants assessed the percentage of fish in both upstream

lakes together that were of the relevant color (the color of the jumping fish).
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Prior to concatenation, linear and quadratic trends over the functional runs were

removed from the BOLD signal (to correct for scanner drift) using multivariate

multiple regression, as was variance related to head movement parameters.

2.7. Preparation of G

The second matrix, G, or the design matrix, contained finite impulse response

(FIR) models of the expected BOLD response to the timing of stimulus presenta-

tions. Since the model of the BOLD response is applied to scans, the number of
rows in G is equivalent to the number of rows in Z. FIR models estimate the

increase in BOLD signal at specific post-stimulus scans relative to all other scans.

The value 1 is placed in rows of G for which BOLD signal amplitude is to be

estimated, and the value 0 in all other rows (‘‘mini boxcar’’ functions). The time

points for which a basis function was specified in the current study were the 1st to

10th scans following stimulus presentation. Since the repetition time (TR) for

these data was 2 s, this resulted in estimating BOLD signal over a 20 s window,

with the start of the first time point corresponding to encoding stimulus onset. We

chose to model a 20 s window because the full HDR can occasionally last up to

20 s in some individuals and some brain regions, although the main peak occurs
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mostly within the first 10 s post-stimulus (Muthukumaraswamy, Evans, Edden,

Wise, & Singh, 2012; Wager, Keller, Lacey, & Jonides, 2005). We wished to be able

to clearly describe the entire HDR time-course. Given that we used a FIR model

rather than a modeled canonical HDR, the analysis did not force the detection of

an HRF lasting a full 20 s. Rather, the shape of the time-course identified in our FIR

regression analysis was data-driven.

In this analysis we created a G matrix that would allow us to estimate

subject-and-condition specific effects by inserting a separate FIR basis set for

each condition and for each individual subject. The columns in this subject-

and-condition based G matrix code 10 post-stimulus time points, 14 experi-

mental conditions (7 conditions within the hypothesis comparison task and

7 matched conditions within the evidence assessment control task), and 46

participants, resulting in 6440 columns (10�14�46¼6440). In the results, the

difference between accepting or rejecting the focal hypothesis did not vary as a

function of whether the evidence was strong or weak, so all results are collapsed

across the strong and weak levels of evidence. Trials on which the evidence for the

focal and alternative hypotheses was equated were also excluded from the

ANOVAs in the results section. These trials were excluded because they required

button pressing in two-thirds of evidence assessment trials but not in the evidence

comparison trials, and therefore would have confounded contrasts between the

comparison and assessment conditions with motor activity.

2.8. Matrix equations

The matrices of the BOLD time series and experimental design are taken as

input, with BOLD in Z being predicted from the FIR model in G. In order to achieve

this, multivariate least-squares linear regression was carried out, whereby the

BOLD time series (Z) was regressed onto the design matrix (G):

Z ¼ GCþE, ð1Þ

where C ¼ ðG0GÞ�1G0Z using least squares regression. This analysis yielded condition-

specific regression weights in the C matrix (i.e., regression weights specific to the

experimental conditions as defined by the design matrix). The condition-specific

regression weights are often referred to (in conventional fMRI analyses) as beta

images. GC contains variability in Z that was predictable from the design matrix G,

that is to say, variability in Z that was predictable from the timing of stimulus

presentations. For the analysis presented here, the G matrix was standardized for

each run separately.

The next step involved applying singular value decomposition to extract

components representing functional networks from GC:

UDV 0 ¼ GC, ð2Þ

where U is the matrix of left singular vectors; D is the diagonal matrix of singular

values; V is the matrix of right singular vectors. Each column of V can be overlaid

on a structural brain image to allow visualization of the neural regions involved in

each functional network. In the current application of CPCA, we orthogonally

rotated (Metzak et al., 2011) and rescaled the V matrix prior to display, so that a

rotated loading matrix is displayed.

2.9. Predictor weights

To interpret the components with respect to the conditions represented in G,

we produced predictor weights (Hunter & Takane, 2002) in matrix P. These are the

weights that would be applied to each column of the matrix of predictor variables

(G) to create U (U¼G� P). The values in P indicate the importance of each column

in the G matrix to the network(s) represented by the component(s), so are essential

for relating the resultant components to the experimental conditions of interest

represented in G. This approach estimates a HDR shape for each individual and each

condition separately.

2.10. Statistical test of component reliability and impact of experimental

manipulations

As is explained above, predictor weights are produced for each combination of

post-stimulus time point, condition, and participant. These weights can be used

to statistically test whether the network-based BOLD response differed from zero

during post-stimulus time, and to confirm that these values are reflecting a HDR

shape (Metzak, Feredoes et al., 2011; Metzak, Riley et al., 2011). The impact of the

experimental conditions on the network-based estimated HDR can also be tested

statistically. Specifically, in this experiment, we sought to test: (1) whether the

amplitude of the HDR differed as a function of whether the focal hypothesis was

accepted or rejected, and (2) whether it differed between the hypothesis

comparison task and the evidence assessment control task. In the first case,

this would be reflected by a significant interaction between Time Point (post-

stimulus time) and Decision (Accept Focal vs. Reject Focal) for the estimated

network-based HDR measure (i.e., the predictor weights). Omitting the pre-

dictor weight representing the first point of post-stimulus time (which was

adjusted to zero in all conditions for the purposes of display and data analysis),
this analysis was carried out as a 9�2 within-subjects ANOVA for each

component, with the factors of Time Point and Decision as within-subject

factors. Selecting ‘‘repeated’’ contrasts for the within-subjects factor of Time

Point allowed significance tests to be restricted to adjacent time points, such

that complex 9�2 interactions (e.g., between Time Point and Decision) were

broken down into 8 different 2�2 interactions involving adjacent levels of the

Time Point. Inspection of the relative size of the p values for these 8 different

2�2 interactions can pinpoint the time points responsible for the 9�2

interactions (e.g., the Accept vs. Reject pairwise comparison increases signifi-

cantly from the 5 s to 7 s post-stimulus time points). Tests of sphericity were

carried out for all ANOVAs. Greenhouse–Geisser adjusted degrees of freedom

are reported where violations of sphericity affected the interpretation of

results; otherwise, the original degrees of freedom are reported. Since our

significance testing is carried out at the level of subject-specific HDR estimates,

use of bootstrapping to produce Z-map images is not required; therefore, point

estimates (from orthogonally rotating and rescaling the V matrix of component

loadings) are overlaid on structural brain images for depiction of the spatial

arrangement of the functional networks.

2.11. Follow-up analysis of contributions by individual clusters to a network time

course

In one functionally connected network for which the strength of the HDR

differed between experimental conditions, we performed a follow-up analysis to

examine how different regions of the network contributed to that effect. This

clarified whether the difference between conditions in that network was simply

due to a higher overall level of activation within any single region of the network

(e.g., the dACC), or reflected a stronger signal for the functionally connected

network as a whole. This involved exploring whether each region of the network

showed stronger signal during one condition than during another. It was achieved

as follows. We restricted the analysis to voxels with the most dominant 20% of

component loadings (the values overlaid on the brain images, rotated V in Eq. (2)).

For each cluster visible in the network, we multiplied those component loadings

for voxels within the cluster of interest by the corresponding predicted scores (GC

in Eq. (1)) to create cluster-specific component scores (one score per functional

scan, analogous to rotated U in Eq. (2)). These were then correlated with the model

(G in Eq. (1)) to estimate cluster-specific predictor weights. ANOVAs performed on

these predictor weights provided a post-hoc description of the significant effects

identified in the full-network analysis.

2.12. Follow-up analysis of contributions by peak and off-peak voxels to a network

time course

In addition to exploring how individual clusters within a network contributed

to the network time course, we also assessed the contributions of peak and off-

peak voxels. In this analysis, we included voxels from every cluster within the

network, but adjusted the percentage cutoff for the most dominant loadings. We

first estimated predictor weights including the top 20% of component loadings for

each cluster. The percentage for this cutoff was then lowered in increments of 5%

to include more voxels, with the analysis being repeated at each cutoff, until a

cutoff was reached for which the effect was statistically significant. Note that the

initial analysis on full-network predictor weights, described in the sections above,

reflects a percentage cutoff of 100% (i.e., all brain voxels were included, and

the contribution of each voxel was weighted by how strongly it loaded onto the

component of interest).
3. Results

Behavioral responses are displayed in Table 1. Most of the
ratings in the hypothesis comparison task and percentage esti-
mates in the evidence assessment control task were quite close to
the mathematically normative ratings. The exceptions were the
ratings made when the focal and alternative lakes contained 20%
and 50% fish of the relevant color, or vice versa. These ratings
were significantly closer to the mid-point of the rating scale than
were the mathematically normative ratings. The magnitude of
the deviation from the mathematically normative rating did not
depend, t(45)¼1.58, ns, on whether the evidence favored the focal
hypothesis, t(45)¼5.58, po0.001, or its alternative t(45)¼
4.04, po0.001. Participants were simply more cautious than
necessary when presented with strong evidence, regardless of
which hypothesis that evidence favored. As mentioned above, for
all analyses of fMRI data, only trials on which the participants
moved the cursor on the response scale were included.



Table 1
Ratings of the relative probability that the focal hypothesis rather than its alternative is true, expressed as a percentage of the total height of the rating scale.

Percentage of fish of the relevant color Hypothesis comparison task Evidence assessment (control) task

Focal lake (f) Alternative lake (a) Probability rating:

mean (SD)

Mathematical norm:

100� f/(fþa)

Percentage estimate:

mean (SD)

Mathematical norm:

(fþa)/2

20 20 48.2 (4.2) 50.0 19.7 (10.7) 20.0

20 50 34.8 (10.5)n 28.6 34.1 (6.0) 35.0

50 20 63.8 (9.3)n 71.4 34.2 (6.4) 35.0

50 50 50.5 (3.4) 50.0 51.0 (6.0) 50.0

50 80 39.1 (11.1) 38.5 66.0 (8.2) 65.0

80 50 65.4 (11.0) 61.5 66.5 (6.4) 65.0

80 80 51.8 (3.38) 50.0 79.8 (6.2) 80.0

n Indicates a rating deviating significantly from the mathematical norm at po0.001, which remains significant after a Bonferroni correction for multiple comparisons.

Table 2
Cluster volumes for most extreme 20% of Component 1 loadings, with anatomical descriptions, MNI coordinates, and Brodmann’s area for the peaks within each cluster.

Only clusters425 mm3 are presented here. All of the loadings for this component were positive.

Cortical regions Cluster volume (mm3) Brodmann’s area for
peak locations

MNI coordinate (X Y Z) for peak locations

Cluster 1 (bilateral) 308,032

Superior parietal 7 32 �60 52

Middle occipital 18 �32 �96 0

Fusiform gyrus 18 �28 �88 �16

Superior parietal lobe 7 �24 �68 52

Precuneus 7 28 �72 44

Inferior occipital gyrus 18 32 �92 �12

Cingulate gyrus/dACC/supplementary motor area 32 4 16 48

Lingual gyrus 17 �12 �100 �8

Middle occipital gyrus 19 36 �88 12

Middle frontal gyrus 6 32 0 60

Fusiform gyrus 19 �44 �76 �16

Cerebellum (right) n/a 28 �68 �20

Lateral occipital 19 32 �80 28

Superior parietal lobule 40 �36 �48 48

Lateral occipital gyrus 19 �28 �80 28

Lateral occipital gyrus 37 48 �64 �16

Cerebellum (left) n/a 36 �56 �28

Supramarginal gyrus 40 52 �36 48

Precentral gyrus 9 �52 8 32

Precentral gyrus 4 �36 �20 64

Superior frontal gyrus/supplementary motor cortex 6 �4 0 72

Cluster 2: 7168

Right precentral gyrus 44 56 12 32

Cluster 3: 5632

Right superior frontal gyrus/frontal pole 46 40 44 28

Cluster 4: 960

Right thalamus n/a 12 �16 8

Cluster 5: 768

Left middle frontal gyrus 9 �44 28 28

Cluster 6: 320

Right insula/orbitofrontal cortex 47 32 20 0

Cluster 7: 256

Right Cerebellum n/a 24 �40 �48

Cluster 8: 64

Left temporal pole 22 �52 12 �8

Cluster 9: 64

Right thalamus n/a 12 �4 12
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This allowed us to match the hypothesis comparison and evi-
dence assessment tasks in terms of motor activity.

The scree plot of singular values sorted by magnitude suggested
extraction of two components (corresponding to two functional
networks). The predictor weights associated with each component
followed a time course reflecting an HDR shape. Correspondingly, a
significant main effect of Time Point was present for each compo-
nent. The percentages of task-related variance accounted for by
the first and second rotated components were 19.3% and 9.8%,
respectively. The brain regions comprising each functional network
are portrayed in Tables 2 and 3 and Fig. 2. Note that only the
strongest 20% of loadings are displayed in those figures, for the
sake of clearly displaying the dominant features of the spatial
pattern of each component. However, all of the predictor weights
analyzed below represent a weighted aggregate of activity across
100% of brain voxels, with the only exception being the paragraph



Table 3
Cluster volumes for most extreme 20% of Component 2 loadings, with anatomical descriptions, MNI coordinates, and Brodmann’s area for the peaks within each cluster.

Only clusters425 mm3 are presented here. Positive and negative loadings are presented in the top and bottom sections of the table, respectively.

Cortical regions Cluster volume (mm3) Brodmann’s area for
peak locations

MNI coordinate (X Y Z) for peak locations

Positive loadings

Cluster 1: 7808

Left occipital pole 17 �28 �100 0

Cluster 2: 7680

Right occipital pole 18 28 �96 0

Cluster 3: 2624

Superior parietal lobule 7 28 �64 48

Cluster 4: 768

Left superior & inferior parietal lobules 40 �44 �40 44

Cluster 5: 704

Left superior & inferior parietal lobules 7 �24 �68 48

Cluster 6: 64

Left middle & superior frontal gyri 6 �28 �4 52

Negative loadings

Cluster 1 (bilateral): 94,784

Ventromedial prefrontal cortex 11 0 52 �12

Ventromedial Prefrontal Cortex 32 �4 48 0

Paracingulate gyrus 10 0 52 4

Middle & superior frontal gyri 32 �24 28 44

Middle & superior frontal gyri 9 �20 36 44

Superior frontal gyrus 8 �4 40 52

Superior frontal gyrus 44 �40 16 48

Cluster 2 (right hemisphere): 77,696

Superior temporal gyrus 22 56 �60 16

Middle temporal gyrus 21 60 �8 �24

Orbitofrontal cortex/inferior frontal gyrus 47 32 32 �20

Orbitofrontal cortex/inferior frontal gyrus 45 52 32 �4

Superior temporal gyrus 48 60 �4 �4

Temporal pole 38 36 24 �28

Temporal pole 20 36 16 �44

Temporal pole 36 32 4 �24

Parietal operculum 48 48 �32 20

Parahippocampal gyrus 20 28 �8 �24

Hippocampus 36 28 �8 �24

Cluster 3 (left hemisphere): 58,048

Middle temporal gyrus & lateral occipital cortex 39 �48 �76 32

Postcentral gyrus 20 �60 �12 20

Orbitofrontal cortex 47 �28 32 �16

Inferior temporal gyrus 37 �64 �52 �8

Orbitofrontal cortex 38 �48 24 �12

Temporal pole 21 �48 8 �36

Inferior frontal gyrus 45 �52 24 12

Inferior frontal gyrus 47 �28 12 �24

Parahippocampal gyrus 38 �32 4 �20

Cluster 4 (bilateral): 53,056

Precuneus/posterior cingulate 4 40 �24 60

Cluster 5: 8152

Right postcentral gyrus 4 40 �24 60

Cluster 6: 4928

Right cerebellum n/a 24 �84 �36

Cluster 7: 3200

Left parahippocampal gyrus 37 �32 �32 �20

Left hippocampus 30 �24 �20 �20

Left parahippocampal gyrus & left hippocampus 36 �20 �8 �28

Cluster 8: 3136

Left cerebellum n/a �24 �84 �36

Cluster 9: 768

Right subcallosal cortex 25 4 12 �12

Cluster 10: 128

Left insula 20 �40 �12 �12

Cluster 11: 128

Right precentral gyrus 6 12 �20 76

Cluster 12: 64

Right precentral gyrus 4 1 �24 68
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describing our follow-up analysis, in which we explored how
predictor weight time courses changed as they were calculated
for the voxels with the top 5% of loadings, those with the top 10%,
and so forth. Component 1 involved activation in a network
involving the dACC and bilateral parietal and lateral occipital
regions. Component 2 involved deactivation in the precuneus,
ventromedial prefrontal cortex, and bilateral middle temporal gyri;
areas which overlap substantially with the default mode network
(Buckner, Andrews-Hanna, & Schacter, 2008; Fox et al., 2005), as
well as activation in lateral occipital clusters. Note that, as
Component 2 is dominated by negative loadings, a strongly
positive predictor weight for Component 2 mostly reflects



Fig. 2. Functional networks identified by CPCA, with the strongest 20% of component loadings shown. Note that predictor weight time courses are based on a whole-brain

network, although only the top 20% are displayed here. Component 1 (a) consisted of activations (positive loadings) within a dACC-based network. This network was more

active when the evidence supported accepting the focal hypothesis than when it supported rejecting it. Component 2 (b) was dominated by deactivations (negative

loadings) in regions widely reported to belong to the default mode network, but also included activations (positive loadings) in two parietal regions and two lateral

occipital regions. Note that predictor weights can be interpreted as correlations, so a strongly positive predictor weight in the time course for Component 2 indicates that

the pattern of deactivations in regions of the default mode network is more intense for that post-stimulus time point and experimental condition.
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activation reductions. Specifically, it reflects an aggregate of
deactivations in the large number of voxels with negative loadings
and concurrent activations in the small number of voxels with
positive loadings. Thus, a strongly positive predictor weight for a
given condition and post-stimulus time point reflects strong
activation reduction of the default mode network.

3.1. Accept focal vs. reject focal

In order to investigate how each component varied as a function
of acceptance or rejection of the focal hypothesis, we performed
2�9 ANOVAs with factors of Decision (Accept Focal vs. Reject Focal)
and Time Point. A Decision� Time Point ANOVA carried out on the
Component 1 predictor weights revealed no main effect of Decision,
F(1,45)¼0.15, ns, a significant main effect of Time Point, F(8,360)¼
96.27, po0.001, and a significant Decision�Time Point interac-
tion, F(8,360)¼3.23, p ¼0.001. The post-hoc analysis examining this
significant interaction using only adjacent time points indicated that
the pair-wise contrast of Accept4Reject increased substantially
from 5 to 7 s post-stimulus (p¼0.01), reflecting a higher HDR peak
in the Accept Focal condition relative to the Reject Focal condition.

A Decision�Time Point ANOVA carried out on the Component
2 predictor weights revealed no main effect of Decision, F(1,45)¼0.02,
ns, a significant main effect of Time Point, F(8,360)¼89.37, po0.001,
and a significant Decision�Time Point interaction F(8,360)¼2.50,
po0.05. The follow-up analysis examining this significant interaction
using only adjacent time points indicated that the pair-wise contrast
of Accept4Reject increased substantially from 11 to 13 s post-
stimulus (p¼0.05), reflecting a slightly right-shifted HDR peak in
the Accept Focal condition relative to the Reject Focal condition.

When Components 1 and 2 were entered into a combined
analysis, there was a significant Decision�Component
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interaction, F(1,45)¼4.24, po0.05, reflecting the fact that the
mean difference in predictor weights between the Accept Focal
and Reject Focal conditions was greater for Component 1
(M¼0.017) than for Component 2 (M¼0.001). As can be seen in
Fig. 2, the predictor weight time course for Component 1 (the
dACC-based network) reached higher amplitude in the Accept
Focal (evidence–hypothesis match) condition than in the Reject
Focal (evidence–hypothesis mismatch) condition. In contrast, for
Component 2 (the default-mode network) there was no clear
amplitude difference, but there was a slightly right-shifted HDR
peak in the Accept Focal condition.

A follow-up analysis was carried out to clarify whether the
difference between focal hypothesis acceptance and rejection in
the dACC-based network was simply due to a higher overall level
of activation within any single region of the network (e.g., the
dACC), or reflected a stronger signal for the functionally con-
nected network as a whole. This involved exploring whether each
region of the dACC-based network showed stronger signal during
focal hypothesis acceptance than rejection. Cluster-specific pre-
dictor weights were estimated as described in the Methods
section. We first performed this analysis including only voxels
corresponding to the top 20% of component loadings, as are
displayed in Fig. 2A, for each individual cluster. The Deci-
sion� Time Point interaction was not significant for any indivi-
dual cluster, including the dACC, indicating that the significant
interaction reported above is not specific to any one particular
brain region within the network. We also performed this analysis
at the 20% cutoff for all displayed clusters simultaneously and
found no significant interaction. We then carried out this analysis
including all voxels that passed a threshold increasing by 5%
increments (i.e., 20%, 25%, 30%, etc.) of the dominant loadings. The
Decision� Time Point interaction reached significance, F(8,360)¼
2.42, p¼0.05, once the threshold was set at the dominant 45% of
loadings. No new clusters emerged at this threshold; rather, the
newly included voxels formed concentric rings around the exist-
ing clusters. It was not possible to create cluster-specific predictor
weights at the 45% cutoff because as the clusters grew in size
their edges met, resulting in one contiguous cluster identified per
cerebral hemisphere.

The above results suggest that a pattern spanning much of
the brain, not just the peaks displayed in Fig. 2, is important
to representing the difference between conditions. It should be
noted that the spatial patterns of positive and negative peaks
were the same for the two components. The difference between
them lay in the off-peak voxels. In Component 1 (the dACC-based
network), 95.76% of voxels had positive loadings. In Component 2
(the default mode network), 80.23% of voxels had negative
loadings. In sum, the off-peak voxels accounted for both the
differences in spatial pattern between brain networks and also for
the differences in cognitive processing. These analyses are con-
gruent with an account holding that the stronger signal during
focal hypothesis acceptance reflects coordinated activity across a
network of brain regions, and emphasizes the importance of the
contribution of non-peak brain regions to this effect (i.e., the
shape of the cluster as well as the peak amplitude and location).

3.2. Hypothesis comparison vs. evidence assessment

In order to compare component activity in the Hypothesis
Comparison task to that in the Evidence Assessment task, we used
2�9 ANOVAs with factors of Task (Hypothesis Comparison vs.
Evidence Assessment) and Time Point (9 time points displaying
how the BOLD response progressed over 2–20 s after stimulus
presentation). An ANOVA carried out on the Component 1 pre-
dictor weights revealed no main effect of Task, F(1,45)¼0.01, ns, a
significant main effect of Time Point, F(8,360)¼122.93, po0.001,
and no Task� Time Point interaction, F(3.71,167.14)¼2.08, ns. A
Task� Time Point ANOVA carried out on the Component 2 pre-
dictor weights revealed no main effect of Task, F(1,45)¼0.51, ns, a
significant main effect of Time Point, F(8,360)¼119.09, po0.001,
and no Task� Time Point interaction, F(8,360)¼1.16, ns. As can be
seen in Fig. 2A, the time courses of the two tasks overlap very
closely on Components 1 and 2.

3.3. Follow-up analysis testing for lateralization effects

The tasks used in this study involved randomization designed
to ensure that the left and right lakes corresponded to the focal
hypothesis equally often. However, we felt it prudent to confirm
empirically that no left/right imbalances occurred. To this pur-
pose, we compared the cluster-specific predictor weights
between left and right hemisphere parietal-occipital clusters.
There were no main effects of hemisphere and no interactions
of hemisphere with any other factors of interest in either the
Hypothesis Comparison task or the Evidence Assessment
control task.
4. Discussion

In order to understand the neural basis of comparing evidence
for conflicting hypotheses, we used a probabilistic reasoning
paradigm to investigate functional brain networks engaged in
deciding which hypothesis to accept. As these decisions are
comparable to ‘‘Aha!’’ moments, when coherence between the
correct interpretation and the available evidence is recognized,
we expected a dACC-based network to be involved. As predicted,
we found more activity within a dACC-based network when the
focal hypothesis was accepted (an evidence–hypothesis match)
than when it was rejected (an evidence–hypothesis mismatch).
This is consistent with a role for the dACC and its associated
functional network in recognizing a coherent mental construct, or
triggering recognition of a match between the evidence and the
focal hypothesis. However, the results emphasize that the entire
dACC-based network is associated with this effect, not only any
individual region. There was also a delayed BOLD response in the
default-mode network for hypothesis acceptance, but no overall
difference in amplitude.

The CPCA method was optimal for identifying the above
pattern of increased activity in the dACC-based network during
focal hypothesis acceptance. This is primarily because fmri-CPCA
is designed to identify responses to experimental manipulations
of task conditions, rather than identifying spontaneous activity. It
is the initial regression phase of CPCA that sets it apart from other
component extraction methods and makes it advantageous for
identifying task-related functional network changes. This regres-
sion constrains the analysis to the small portion variance in brain
activity attributable to task performance. This ensures that the
results of the subsequent component extraction step are domi-
nated by task-related activity rather than spontaneous activity.
This order of operations is particularly important in cases where
the spatial configuration of a network changes in response to
cognitive demands. While CPCA uses regression to predict brain
activity (the criterion) from task timing (the predictor), thereby
constraining spatial network configurations to variance predict-
able from cognitive demands. This is advantageous relative to
methods that treat both of these as criterion variables and
searches for common factors, such as partial least squares (PLS;
McIntosh, Chau, & Protzner, 2004), which treats both of these as
criterion variables and searches for common factors (Metzak,
2011). An advantage of CPCA over seed-based connectivity
methods is that the lack of a requirement to select a seed region
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makes the analysis more data-driven. Furthermore, PCA identifies
the dominant pattern of intercorrelations in a dataset in a more
efficient manner than performing a large number of pairwise
correlation analyses. In sum, the results of this study demonstrate
the efficacy of constraining an analysis to variance attributable to
manipulations of interest prior to employing component analysis.

Although we focus here on the role of the dACC in our task, the
role of the other regions in the network merits some discussion.
The dACC-based network also included bilateral activity in the
precentral gyrus. This was stronger in the left hemisphere, which
is consistent with the use of the right hand to respond. We also
found strong activity in bilateral parietal and lateral occipital
clusters, which is consistent with the use of large visual displays
in our paradigm. Finally, we found weak right-lateralized DLPFC
activity. As other reports of the role of the DLPFC in perceptual
decision-making indicate that the left DLPFC plays the dominant
role (Heekeren, Marrett, & Ungerleider, 2008; Philiastides,
Auksztulewicz, Heekeren, & Blankenburg, 2011; Rahnev, Lau, &
de Lange, 2011), our DLPFC activity is unlikely to reflect the same
function. As can be seen in Fig. 2, it also exhibits noticeably
weaker loadings than the dACC or other clusters in Component 1.
The network formed by all of these regions represents a variant of
the ‘Task-Positive Network’ widely reported to be involved in
spatial attention, working memory, and a wide variety of other
tasks (Fox, Zhang, Snyder, & Raichle, 2009). In the current study
we focus on the role of the dACC in this network because it
exhibits the strongest loadings outside of visual and motor areas.

Our follow-up analyses suggested that the stronger signal from
the dACC-based network in response to evidence–hypothesis
matches (Accept Focal) depended on an interconnected network-
wide pattern. In other words, it depended on more cortical regions
than only the peak locations and their amplitude. These analyses
indicate that the stronger signal during focal hypothesis acceptance
reflects coordinated activity across a network of brain regions, rather
than increased activity within any individual cluster peak or subset of
clusters peaks. They also suggest that activity throughout each
network cluster (e.g., cluster shape), rather than only at the peaks,
underlies the stronger signal in response to evidence–hypothesis
matches. This demonstrates the importance of a functional connec-
tivity approach to fMRI data analysis based on identifying network
patterns, in that it may be able to detect condition differences that
could be missed with univariate analyses.

A secondary goal was to investigate activity in the hypothesis
comparison task over and above that in the evidence assessment
control task. As the hypothesis comparison task involves more
cognitive steps than the evidence assessment control task, we
expected it to recruit the dACC-based network more strongly,
given that the dACC-based network is known to be responsive to
cognitive demands (Duncan & Owen, 2000). Contrary to our predic-
tions, we found no between-condition differences in network
activity. Assuming that a number of cognitive operations do differ
between these conditions, we can conclude that our methods were
not sensitive to them. That is not to say that differences in brain
activity do not exist, as certain cognitive operations clearly present
in the experimental condition are absent in the tightly matched
control condition. One possibility is that the BOLD signal may simply
be too temporally coarse to detect these differences. The hemody-
namic response to any single cognitive event takes several seconds
to reach its peak (Boynton, Engel, Glover, & Heeger, 1996; Friston
et al., 1998). Therefore the responses to adjacent rapid cognitive
events involved in complex cognitive processes, such as those
differing between evidence assessment and comparison, may be
merged in the measured BOLD signal Whitman, Ward & Woodward
(2013). Consequently, the fMRI modality may not be sensitive to
subtle differences between two series of complex cognitive events,
such as those involved in evidence assessment and comparison here.
This study is subject to a number of limitations. As the results
are dependent on the analysis of functional networks, they may
not replicate across other non-connectivity-based analysis meth-
ods. Moreover, it may be that other functional brain networks
accounting for smaller portions of variance in the BOLD signal
also play a role in hypothesis comparison, but were not detected
here. Furthermore, the results depict a correlational relationship
between differences in network activity and the experimental
manipulations of interest, leaving the question of causality open.
Finally, the data are limited by the low temporal resolution
of fMRI and slow time course of the BOLD response, and other
modalities sensitive to more precise time scales (such as MEG)
may be beneficial in this regard Whitman, Ward & Woodward
(2013).

The results of the current experiment help to clarify the precise
role of a dACC-based network in the recognition of the ‘‘Aha!’’
moment, or in triggering recognition of a match between the
evidence and the focal hypothesis. A number of other roles have
been attributed to the dACC, such as monitoring the environment
for conditions that may require adjustments in control over the
course of action (Behrens, Woolrich, Walton, & Rushworth, 2007;
Paus, 2001; Woodward, Metzak, Meier, & Holroyd, 2008), detection
of conflict (Walsh, Buonocore, Carter, & Mangun, 2011), detection of
errors (Carter et al., 1998), or detection of surprise (Egner, 2011;
Egner & Hirsch, 2005). The moment a decision is made (i.e., an
insightful ‘‘Aha!’’ moment) a given pattern of coherence between
aspects of a mental representation is recognized. Thus, these data
support a general role for a dACC-based network in recognition that
a change in mental set is required (Woodward, Metzak, Meier, &
Holroyd, 2008).

Optimally interpreting our situations and experiences fre-
quently requires comparing the evidence supporting conflicting
hypotheses and deciding which to accept, with the final decision
stage being comparable to an ‘‘Aha!’’ moment reached during
insightful problem solving. The results suggested that this
involves a stronger signal for a dACC-based network as a whole,
and that functional connectivity between the dACC and other
brain regions is a possible mechanism for coherence between
components of a mental representation. This helps clarify the role
of the dACC in the wide variety of tasks which involve judging
and comparing hypotheses, such as social interaction, economic
decision making, voter choice, perceptual decisions, and evaluat-
ing scientific research.
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